Skip to content

Sensor Data

LiDAR Point Cloud

LiDAR directory contains point cloud data as the name of <LIDAR_CONCAT> or <LIDAR_TOP>:

data/
└── LIDAR_CONCAT
    ├── <FRAME_ID>.pcd.bin
    ...

Each file contains (x, y, z, intensity, ring_idx(=-1)), and location coordinates are given with respect to the ego vehicle coordinate system.

Each file can be loaded using as follows:

# Using NumPy
import numpy as np

def load_lidar_point_cloud(file_path) -> np.ndarray:
    data = np.fromfile(file_path, dtype=np.float32) # (N*5,)
    return data.reshape((-1, 5)) # (N, 5)

# Using t4-devkit
from t4_devkit.dataclass import LidarPointCloud

def load_lidar_point_cloud_t4(file_path) -> LidarPointCloud:
    return LidarPointCloud.from_file(file_path)

Camera Image

Camera directory contains raw images as the name of <CAM_XXX>:

data/
├── CAM_BACK
   ├── <FRAME_ID>.jpg
   ...
├── CAM_BACK_LEFT
├── CAM_BACK_RIGHT
├── CAM_FRONT
...

Radar Object

Radar directory contains radar object tracks

data/
├── RADAR_BACK
   ├── <FRAME_ID>.pcd
   ...
├── RADAR_BACK_LEFT
├── RADAR_BACK_RIGHT
├── RADAR_FRONT
...

Each file is based on NuScenes radar data format as follows:

# .PCD v0.7 - Point Cloud Data file format
VERSION 0.7
FIELDS x y z dyn_prop id rcs vx vy vx_comp vy_comp is_quality_valid ambig_state x_rms y_rms invalid_state pdh0 vx_rms vy_rms
SIZE 4 4 4 1 2 4 4 4 4 4 1 1 1 1 1 1 1 1
TYPE F F F I I F F F F F I I I I I I I I
COUNT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
WIDTH 112
HEIGHT 1
VIEWPOINT 0 0 0 1 0 0 0
POINTS 112
DATA binary
from t4_devkit.dataclass import RadarPointCloud

def load_radar_point_cloud(file_path) -> RadarPointCloud:
    return RadarPointCloud.from_file(file_path)