Skip to content

viewer

RerunViewer

RerunViewer(app_id: str, *, cameras: Sequence[str] | None = None, with_3d: bool = True, spawn: bool = True)

A viewer class that renders some components powered by rerun.

Construct a new object.

Parameters:

  • app_id (str) –

    Application ID.

  • cameras (Sequence[str] | None, default: None ) –

    Sequence of camera names. If None, any 2D spaces will not be visualized.

  • with_3d (bool, default: True ) –

    Whether to render objects with the 3D space.

  • spawn (bool, default: True ) –

    Whether to spawn the viewer.

Examples:

>>> from t4_devkit.viewer import RerunViewer
# Rendering both 3D/2D spaces
>>> viewer = RerunViewer("myapp", cameras=["camera0", "camera1"])
# Rendering 3D space only
>>> viewer = RerunViewer("myapp")
# Rendering 2D space only
>>> viewer = RerunViewer("myapp", cameras=["camera0", "camera1"], with_3d=False)

with_labels

with_labels(label2id: dict[str, int]) -> Self

Return myself after creating rr.AnnotationContext on the recording.

Parameters:

  • label2id (dict[str, int]) –

    Key-value mapping which maps label name to its class ID.

Returns:

  • Self

    Self instance.

Examples:

>>> label2id = {"car": 0, "pedestrian": 1}
>>> viewer = RerunViewer("myapp").with_labels(label2id)

with_global_origin

with_global_origin(lat_lon: tuple[float, float]) -> Self

Return myself after setting global origin.

Parameters:

  • lat_lon (tuple[float, float]) –

    Global origin of map (latitude, longitude).

Returns:

  • Self

    Self instance.

Examples:

>>> lat_lon = (42.336849169438615, -71.05785369873047)
>>> viewer = RerunViewer("myapp").with_global_origin(lat_lon)

save

save(save_dir: str) -> None

Save recording result as save_dir/{app_id}.rrd.

Parameters:

  • save_dir (str) –

    Directory path to save the result.

render_box3ds

render_box3ds(*args, **kwargs) -> None

Render 3D boxes.

render_box2ds

render_box2ds(*args, **kwargs) -> None

Render 2D boxes.

render_segmentation2d

render_segmentation2d(seconds: float, camera: str, masks: Sequence[NDArrayU8], class_ids: Sequence[int], uuids: Sequence[str | None] | None = None) -> None

Render 2D segmentation image.

Parameters:

  • seconds (float) –

    Timestamp in [sec].

  • camera (str) –

    Name of camera channel.

  • masks (Sequence[NDArrayU8]) –

    Sequence of segmentation mask of each instance, each mask is the shape of (W, H).

  • class_ids (Sequence[int]) –

    Sequence of label ids.

  • uuids (Sequence[str | None] | None, default: None ) –

    Sequence of each instance ID.

render_pointcloud

render_pointcloud(seconds: float, channel: str, pointcloud: PointCloudLike) -> None

Render pointcloud.

Parameters:

  • seconds (float) –

    Timestamp in [sec].

  • channel (str) –

    Name of the pointcloud sensor channel.

  • pointcloud (PointCloudLike) –

    Inherence object of PointCloud.

render_image

render_image(seconds: float, camera: str, image: str | NDArrayU8) -> None

Render an image.

Parameters:

  • seconds (float) –

    Timestamp in [sec].

  • camera (str) –

    Name of the camera channel.

  • image (str | NDArrayU8) –

    Image tensor or path of the image file.

render_ego

render_ego(*args, **kwargs) -> None

Render an ego pose.

render_calibration

render_calibration(*args, **kwargs) -> None

Render a sensor calibration.

distance_color

distance_color(distances: Number | ArrayLike, cmap: str | None = None, v_min: float = 3.0, v_max: float = 75.0) -> tuple[float, float, float] | NDArrayF64

Return color map depending on distance values.

Parameters:

  • distances (Number | ArrayLike) –

    Array of distances in the shape of (N,).

  • cmap (str | None, default: None ) –

    Color map name in matplotlib. If None, turbo_r will be used.

  • v_min (float, default: 3.0 ) –

    Min value to normalize.

  • v_max (float, default: 75.0 ) –

    Max value to normalize.

Returns:

  • tuple[float, float, float] | NDArrayF64

    Color map in the shape of (N,). If input type is any number, returns a color as tuple[float, float, float]. Otherwise, returns colors as NDArrayF64.

calculate_geodetic_point

calculate_geodetic_point(position: TranslationType, origin: tuple[float, float]) -> tuple[float, float]

Transform a position in a map coordinate system to a position in a geodetic coordinate system.

Parameters:

  • position (TranslationType) –

    3D position in a map coordinate system.

  • origin (tuple[float, float]) –

    Map origin position in a geodetic coordinate system, which is (latitude, longitude).

Returns:

  • tuple[float, float]

    tuple[float, float]: Transformed position in a geodetic coordinate system, which is (latitude, longitude).

format_entity

format_entity(root: str, *entities: Sequence[str]) -> str

Format entity path.

Parameters:

  • root (str) –

    Root entity path.

  • *entities (Sequence[str], default: () ) –

    Entity path(s).

Returns:

  • str

    Formatted entity path.

Examples:

>>> format_entity("map")
"map"
>>> format_entity("map", "map/base_link")
"map/base_link"
>>> format_entity("map", "map/base_link", "camera")
"map/base_link/camera"