dataclass
    A class to represent 3D box.
Attributes:
- 
          unix_time(int) –Unix timestamp. 
- 
          frame_id(str) –Coordinates frame ID where the box is with respect to. 
- 
          semantic_label(SemanticLabel) –SemanticLabelobject.
- 
          confidence(float) –Confidence score of the box. 
- 
          uuid(str | None) –Unique box identifier. 
- 
          position(Vector3) –Box center position (x, y, z). 
- 
          rotation(Quaternion) –Box rotation quaternion. 
- 
          shape(Shape) –Shapeobject.
- 
          velocity(Vector3 | None) –Box velocity (vx, vy, vz). 
- 
          num_points(int | None) –The number of points inside the box. 
- 
          visibility(VisibilityLevel) –Box visibility. 
- 
          future(Future | None) –Box trajectory in the future of each mode. 
Examples:
>>> # without future
>>> box3d = Box3D(
...     unix_time=100,
...     frame_id="base_link",
...     semantic_label=SemanticLabel("car"),
...     position=(1.0, 1.0, 1.0),
...     rotation=(0.0, 0.0, 0.0, 1.0),
...     shape=Shape(shape_type=ShapeType.BOUNDING_BOX, size=(1.0, 1.0, 1.0)),
...     velocity=(1.0, 1.0, 1.0),
...     confidence=1.0,
...     uuid="car3d_0",
... )
>>> # with future
>>> box3d = box3d.with_future(
...     waypoints=[[[1.0, 1.0, 1.0], [2.0, 2.0, 2.0], [3.0, 3.0, 3.0]]],
...     confidences=[1.0],
... )
property
  
    Return the box size in the order of (width, length, height).
Returns:
- 
              Vector3–(width, length, height) values. 
    Return a self instance setting future attribute.
Parameters:
- 
(timestampsArrayLike) –Array of future timestamps at each waypoint in the shape of (T). 
- 
(confidencesArrayLike) –Array of confidences for each mode in the shape of (M). 
- 
(waypointsArrayLike) –Array of waypoints for each mode in the shape of (M, T, D). 
Returns:
- 
              Self–Self instance after setting future.
    
    
    Return the bounding box corners.
Parameters:
- 
(box_scalefloat, default:1.0) –Multiply size by this factor to scale the box. 
Returns:
- 
              NDArrayF64–First four corners are the ones facing forward. The last four are the ones facing backwards, in the shape of (8, 3). 
    A class to represent 2D box.
Attributes:
- 
          unix_time(int) –Unix timestamp. 
- 
          frame_id(str) –Coordinates frame ID where the box is with respect to. 
- 
          semantic_label(SemanticLabel) –SemanticLabelobject.
- 
          confidence(float) –Confidence score of the box. 
- 
          uuid(str | None) –Unique box identifier. 
- 
          roi(Roi | None) –Roiobject.
- 
          position(Vector3 | None) –3D position (x, y, z). 
Examples:
>>> # without 3D position
>>> box2d = Box2D(
...     unix_time=100,
...     frame_id="camera",
...     semantic_label=SemanticLabel("car"),
...     roi=(100, 100, 50, 50),
...     confidence=1.0,
...     uuid="car2d_0",
... )
>>> # with 3D position
>>> box2d = box2d.with_position(position=(1.0, 1.0, 1.0))
    Return a self instance setting position attribute.
Parameters:
- 
(positionVector3Like) –3D position. 
Returns:
- 
              Self–Self instance after setting position.
    Return a box distance from base_link.
Parameters:
- 
(boxBoxLike) –A box. 
- 
(tf_matrixHomogeneousMatrix) –Transformation matrix. 
Raises:
- 
              TypeError–Expecting type of box is Box2DorBox3D.
Returns:
- 
              float | None–float | None: Return Noneif the type of box isBox2Dand itspositionisNone, otherwise returns distance frombase_link.
    Abstract base dataclass for pointcloud data.
abstractmethod
      staticmethod
  
    Return the number of the point dimensions.
Returns:
- 
int(int) –The number of the point dimensions. 
abstractmethod
      classmethod
  
    Create an object from pointcloud file.
Parameters:
- 
(filepathstr) –File path of the pointcloud file. 
Returns:
- 
              Self–Self instance. 
    A dataclass to represent lidar pointcloud.
Attributes:
- 
          points(NDArrayFloat) –Points matrix in the shape of (4, N). 
    A dataclass to represent radar pointcloud.
Attributes:
- 
          points(NDArrayFloat) –Points matrix in the shape of (18, N). 
    A dataclass to represent segmentation pointcloud.
Attributes:
- 
          points(NDArrayFloat) –Points matrix in the shape of (4, N). 
- 
          labels(NDArrayU8) –Label matrix. 
    A dataclass to represent object path including timestamps, confidences, and waypoints.
property
  
    
property
  
    
property
  
    
    
    
    
              Bases: ObjectPath
Represent the past trajectory features.
Note that the expected shape of waypoints is (1, T, D).
Attributes:
- 
          timestamps(NDArrayInt) –Sequence of timestamps (T,). 
- 
          confidences(NDArrayFloat) –Confidences array for the mode (1,). 
- 
          waypoints(Trajectory) –Waypoints matrix in the shape of (1, T, 3). 
Examples:
>>> past = Past(
...     timestamps=[1.0, 2.0]
...     confidences=[1.0],
...     waypoints=[[[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]],
... )
# Get the number of modes.
>>> len(past)
1
# Access the shape of waypoints matrix: (M, T, 3).
>>> past.shape
(1, 2, 3)
# Access waypoints as subscriptable.
>>> past[0] # for mode0
array([[1., 1., 1.],
       [2., 2., 2.]])
>>> past[0, 0] # point0 at mode0
array([1., 1., 1.])
# Access confidence and waypoints for each mode as iterable.
>>> for i, (timestamp, confidence, waypoints) in past:
...     print(f"Mode{i}: {timestamp}, {confidence}, {waypoints}")
...
Mode0: 1.0, 1.0, [[1. 1. 1.] [2. 2. 2.]]
    
              Bases: ObjectPath
Represent the future trajectory features.
Note that the expected shape of waypoints is (M, T, D).
Attributes:
- 
          timestamps(NDArrayInt) –Sequence of timestamps (T,). 
- 
          confidences(NDArrayFloat) –Confidences array for each mode (M,). 
- 
          waypoints(Trajectory) –Waypoints matrix in the shape of (M, T, 3). 
Examples:
>>> future = Future(
...     timestamps=[1.0, 2.0]
...     confidences=[1.0],
...     waypoints=[[[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]],
... )
# Get the number of modes.
>>> len(future)
1
# Access the shape of waypoints matrix: (M, T, 3).
>>> future.shape
(1, 2, 3)
# Access waypoints as subscriptable.
>>> future[0] # for mode0
array([[1., 1., 1.],
       [2., 2., 2.]])
>>> future[0, 0] # point0 at mode0
array([1., 1., 1.])
# Access confidence and waypoints for each mode as iterable.
>>> for i, (timestamp, confidence, waypoints) in future:
...     print(f"Mode{i}: {timestamp}, {confidence}, {waypoints}")
...
Mode0: 1.0, 1.0, [[1. 1. 1.] [2. 2. 2.]]
    A buffer class to store transformation matrices.
Attributes:
- 
          buffer(dict[tuple[str, str], HomogeneousMatrix]) –Matrix buffer whose key is (src, dst).
    Set transform matrix to the buffer. Also, if its inverse transformation has not been registered, registers it too.
Parameters:
- 
(matrixHomogeneousMatrix) –Transformation matrix. 
    Look up the transform matrix corresponding to the src and dst frame ID.
Parameters:
Returns:
- 
              HomogeneousMatrix | None–Returns HomogeneousMatrixif the corresponding matrix can be found, otherwise it returnsNone.
    Translate specified items with the matrix corresponding to src and dst frame ID.
Parameters:
Returns:
- 
              TranslateItemLike | None–TranslateItemLike | None: Returns translated items if the corresponding matrix can be found, otherwise it returns None.
    Rotate specified items with the matrix corresponding to src and dst frame ID.
Parameters:
Returns:
- 
              RotateItemLike | None–TranslateItemLike | None: Returns rotated items if the corresponding matrix can be found, otherwise it returns None.
    Transform specified items with the matrix corresponding to src and dst frame ID.
Parameters:
Returns:
- 
              TransformItemLike | None–TranslateItemLike | None: Returns transformed items if the corresponding matrix can be found, otherwise it returns None.
    
property
  
    
property
  
    Return yaw, pitch and roll.
NOTE
yaw: Rotation angle around the z-axis in [rad], in the range [-pi, pi].
pitch: Rotation angle around the y'-axis in [rad], in the range [-pi/2, pi/2].
roll: Rotation angle around the x"-axis in [rad], in the range [-pi, pi].
Returns:
property
  
    
classmethod
  
    Construct a new object with identity.
Parameters:
- 
(frame_idstr) –Frame ID. 
Returns:
- 
              Self–Constructed self instance. 
classmethod
  
from_matrix(
    matrix: Matrix4x4Like | HomogeneousMatrix,
    src: str | None = None,
    dst: str | None = None,
) -> Self
Construct a new object from a homogeneous matrix.
Parameters:
- 
(matrixMatrix4x4Like | HomogeneousMatrix) –4x4 homogeneous matrix. 
- 
(srcstr | None, default:None) –Source frame ID. This must be specified only if the input matrix is Matrix4x4Like.
- 
(dststr | None, default:None) –Destination frame ID. This must be specified only if the input matrix is Matrix4x4Like.
Returns:
- 
              Self–Constructed self instance. 
    Return a dot product of myself and another.
Parameters:
- 
(otherHomogeneousMatrix) –HomogeneousMatrixobject.
Raises:
- 
              ValueError–self.srcandother.dstmust be the same frame ID.
Returns:
- 
              HomogeneousMatrix–Result of a dot product.