Setup#
Note
Running the driving_log_replayer_v2 requires some additional steps on top of building and installing Autoware, so make sure that driving_log_replayer_v2 installation has been completed first before proceeding.
Sample map: Copyright 2020 TIER IV, Inc.
Sample Dataset: Copyright 2022 TIER IV, Inc.
Set up resources#
-
Dataset and Map Setup (annotationless_perception, localization, obstacle_segmentation, perception)
mkdir -p ~/driving_log_replayer_v2 gdown -O ~/driving_log_replayer_v2/sample_dataset_v2.tar.zst 'https://docs.google.com/uc?export=download&id=1iCoykBBETI_rGfKEFYYb7LFydF-RJVkC' tar -I zstd -xvf ~/driving_log_replayer_v2/sample_dataset_v2.tar.zst -C ~/driving_log_replayer_v2/ gdown -O ~/driving_log_replayer_v2/sample-map-planning.zip 'https://docs.google.com/uc?export=download&id=1499_nsbUbIeturZaDj7jhUownh5fvXHd' unzip -d ~/driving_log_replayer_v2/ ~/driving_log_replayer_v2/sample-map-planning.zip mv ~/driving_log_replayer_v2/sample-map-planning ~/driving_log_replayer_v2/sample_dataset/map
You can also download manually.
-
Dataset and Map Setup(yabloc, eagleye, ar_tag_based_localizer)
gdown -O ~/driving_log_replayer_v2/sample_bag.tar.zst 'https://docs.google.com/uc?export=download&id=17ppdMKi4IC8J_2-_9nyYv-LAfW0M1re5' tar -I zstd -xvf ~/driving_log_replayer_v2/sample_bag.tar.zst -C ~/driving_log_replayer_v2/ mv ~/driving_log_replayer_v2/sample_bag/* ~/driving_log_replayer_v2/ rmdir ~/driving_log_replayer_v2/sample_bag cp -r ~/driving_log_replayer_v2/ar_tag_based_localizer/map ~/driving_log_replayer_v2/eagleye/ cp -r ~/driving_log_replayer_v2/ar_tag_based_localizer/map ~/driving_log_replayer_v2/yabloc/
You can also download manually.
-
Copy the sample scenario to the dataset directory
# Specify the directory where autoware is installed. Change according to your environment. AUTOWARE_PATH=$HOME/ros_ws/awf # SAMPLE_ROOT=${AUTOWARE_PATH}/src/simulator/driving_log_replayer_v2/sample SAMPLE_ROOT=${AUTOWARE_PATH}/src/simulator/driving_log_replayer_v2/sample cp ${SAMPLE_ROOT}/annotationless_perception/scenario.yaml ~/driving_log_replayer_v2/annotationless_perception.yaml cp ${SAMPLE_ROOT}/ar_tag_based_localizer/scenario.yaml ~/driving_log_replayer_v2/ar_tag_based_localizer.yaml cp ${SAMPLE_ROOT}/eagleye/scenario.yaml ~/driving_log_replayer_v2/eagleye.yaml cp ${SAMPLE_ROOT}/localization/scenario.yaml ~/driving_log_replayer_v2/localization.yaml cp ${SAMPLE_ROOT}/obstacle_segmentation/scenario.yaml ~/driving_log_replayer_v2/obstacle_segmentation.yaml cp ${SAMPLE_ROOT}/perception/scenario.yaml ~/driving_log_replayer_v2/perception.yaml cp ${SAMPLE_ROOT}/yabloc/scenario.yaml ~/driving_log_replayer_v2/yabloc.yaml
-
Transform machine learning trained models
source ~/autoware/install/setup.bash ros2 launch autoware_launch logging_simulator.launch.xml map_path:=$HOME/autoware_map/sample-map-planning vehicle_model:=sample_vehicle sensor_model:=sample_sensor_kit # Wait until the following file is created in ~/autoware/install/lidar_centerpoint/share/lidar_centerpoint/data # - pts_backbone_neck_head_centerpoint_tiny.engine # - pts_voxel_encoder_centerpoint_tiny.engine # When the file is output, press Ctrl+C to stop launch.