CLI Reference¶
Autoware-ML provides a unified command-line interface for all major workflows.
Commands¶
| Command | Purpose |
|---|---|
train |
Train models using PyTorch Lightning |
deploy |
Export models to ONNX and TensorRT |
mlflow-ui |
Launch the MLflow tracking UI |
create-dataset |
Generate dataset info files |
train¶
Train a model using the specified Hydra configuration.
All arguments after --config-name are passed to Hydra as overrides. See Configuration for details.
Examples:
# Basic training
autoware-ml train --config-name my_task/my_model
# With overrides
autoware-ml train --config-name my_task/my_model \
trainer.max_epochs=100 \
model.optimizer.lr=0.0001
deploy¶
Export a trained model to ONNX and TensorRT.
Arguments:
--config-name: Path to config (same as used for training)+checkpoint: Path to.ckptcheckpoint file
Options:
output_name=<name>: Base name for output filesoutput_dir=<path>: Output directory
Example:
mlflow-ui¶
Launch the MLflow tracking UI.
Options:
--port,-p: Port for the UI (default: 5000)--db-path: SQLite database path (default:mlruns/mlflow.db)
create-dataset¶
Generate preprocessed info files for a dataset.
autoware-ml create-dataset \
--dataset <name> \
--task <task> \
--root-path <path> \
--out-dir <path> \
[options...]
Arguments:
--dataset: Dataset name--task: Task name (can be repeated for multiple tasks)--root-path: Dataset root directory--out-dir: Output directory for info files
Options:
--version: Dataset version--max-sweeps: Max LiDAR sweeps to include--info-prefix: Prefix for output files
Example: