Skip to content

Quick Start

This guide gets you from zero to a trained model. We'll train a calibration status classifier using the NuScenes dataset.

Prerequisites

Make sure you finished the Installation guide.

1. Setup Dataset

Download the NuScenes full dataset (v1.0) from the official website after registration. After the download, confirm that the dataset is located at $AUTOWARE_ML_DATA_PATH/nuscenes.

2. Launch the Container

cd ~/autoware-ml
./docker/run.sh

3. Generate Dataset Info Files

Autoware-ML needs preprocessed info files that index the dataset:

autoware-ml create-dataset \
    --dataset nuscenes \
    --task calibration_status \
    --root-path data/nuscenes \
    --out-dir data/nuscenes/info \
    --version v1.0-trainval

This creates pickle files for train/val splits.

4. Train the Model

autoware-ml train --config-name calibration_status/resnet18_nuscenes

Training progress appears in your terminal. Checkpoints are saved automatically.

5. Monitor with MLflow

autoware-ml mlflow-ui --port 5000

Open http://localhost:5000 to view loss curves, metrics, and hyperparameters.

6. Export for Deployment

autoware-ml deploy \
    --config-name calibration_status/resnet18_nuscenes \
    +checkpoint=mlruns/<date>/<time>/checkpoints/best.ckpt

This generates ONNX and TensorRT files.