Framework Design¶
Autoware-ML is built on a modular architecture that separates concerns into key components including configuration, data handling, model definition, training, and deployment, among others. This design makes it easy to add new models and datasets while reusing common infrastructure.
Architecture Overview¶
flowchart TB
subgraph Optimization [Hyperparameter Tuning]
Optuna[Optuna]
end
subgraph Configuration [Configuration Layer]
YAML[YAML Configs]
Optuna --> Hydra[Hydra]
YAML --> Hydra
end
subgraph TrainingPipeline [Training Pipeline]
InfoFiles[Info Files]
InfoFiles --> LightningDataModule[Lightning Data Module]
LightningDataModule --> Transforms[Transforms]
Transforms --> Collation[Collation]
Collation --> BatchTransfer[Batch Transfer]
BatchTransfer --> Preprocessing[Preprocessing]
Preprocessing --> ForwardPass[Forward Pass]
ForwardPass --> LossComputation[Loss Computation]
LossComputation --> BackwardPass[Backward Pass]
end
subgraph ModelLayer [Model Definition]
LightningModule[Lightning Module]
LightningModule --> Blocks["Blocks"]
LightningModule --> Optimizers["Optimizers"]
LightningModule --> Schedulers["Schedulers"]
end
subgraph TrainingLoop [Training Orchestration]
Trainer[Lightning Trainer]
Trainer --> CustomCallbacks[Custom Callbacks]
Trainer --> MLflow[MLflow Logger]
Trainer --> Checkpoints[Checkpoints]
end
subgraph Deployment [Deployment Pipeline]
ModelWeights[Model Weights]
ModelWeights --> ONNXExport[ONNX Export]
ONNXExport --> TensorRTEngine[TensorRT Engine]
end
Hydra --> LightningDataModule
Hydra --> LightningModule
Hydra --> Trainer
Hydra --> ModelWeights
style ModelWeights fill:#a5d6a7,opacity:0.2,stroke:#05bc23
style ONNXExport fill:#a5d6a7,opacity:0.2,stroke:#05bc23
style TensorRTEngine fill:#a5d6a7,opacity:0.2,stroke:#05bc23
style Blocks fill:#a5d6a7,opacity:0.2,stroke:#05bc23
style BatchTransfer fill:#a5d6a7,opacity:0.2,stroke:#05bc23
style Preprocessing fill:#a5d6a7,opacity:0.2,stroke:#05bc23
style ForwardPass fill:#a5d6a7,opacity:0.2,stroke:#05bc23
style LossComputation fill:#a5d6a7,opacity:0.2,stroke:#05bc23
style BackwardPass fill:#a5d6a7,opacity:0.2,stroke:#05bc23
Legend: CPU operations | GPU operations
Core Components¶
Configuration (Hydra)¶
Everything in Autoware-ML is configured through YAML files processed by Hydra. This enables:
- Hierarchical configs - Inherit from base configs, override specific values
- Runtime overrides - Change any parameter from the command line
- Automatic instantiation -
_target_keys specify Python classes to instantiate viahydra.utils.instantiate()
See Configuration Guide for full details on Hydra syntax.
Data Module¶
The DataModule class (extending LightningDataModule) manages:
- Dataset creation for each split (train/val/test/predict)
- DataLoader configuration (batch size, workers, shuffling, pin_memory, etc.)
- Transforms (CPU-side augmentations per split)
- Collation (batching samples together, stacking selected keys)
- Preprocessing (GPU-side transforms after batch transfer)
class DataModule(L.LightningDataModule, ABC):
def __init__(
self,
stack_keys: Optional[List[str]] = None,
train_transforms: Optional[TransformsCompose] = None,
val_transforms: Optional[TransformsCompose] = None,
test_transforms: Optional[TransformsCompose] = None,
predict_transforms: Optional[TransformsCompose] = None,
data_preprocessing: Optional[DataPreprocessing] = None,
train_dataloader_cfg: Optional[DataLoaderConfig] = None,
):
...
@abstractmethod
def _create_dataset(
self, split: str, transforms: Optional[TransformsCompose] = None
) -> Dataset:
...
def collate_fn(self, batch_inputs_dicts: List[Dict[str, Any]]) -> Dict[str, Any]:
...
def on_after_batch_transfer(
self, batch_inputs_dict: Dict[str, Any], dataloader_idx: int
) -> Dict[str, Any]:
if self.data_preprocessing is not None:
batch_inputs_dict = self.data_preprocessing(batch_inputs_dict)
return batch_inputs_dict
The Dataset base class handles transforms application:
class Dataset(TorchDataset, ABC):
def __getitem__(self, index: int) -> Dict[str, Any]:
input_dict = self._get_input_dict(index)
input_dict = self._transform(input_dict)
return input_dict
@abstractmethod
def _get_input_dict(self, index: int) -> Dict[str, Any]:
...
Transforms¶
Transforms are composable data augmentations applied per-sample on CPU. They follow a dict-in/dict-out pattern where each transform receives a dictionary and returns updates to merge back.
class BaseTransform(ABC):
def __call__(self, input_dict: Dict[str, Any]) -> Dict[str, Any]:
return self.transform(input_dict)
@abstractmethod
def transform(self, input_dict: Dict[str, Any]) -> Dict[str, Any]:
...
class TransformsCompose:
def __init__(self, pipeline: Optional[List[BaseTransform]] = None):
self.pipeline = pipeline or []
def __call__(self, input_dict: Dict[str, Any]) -> Dict[str, Any]:
for transform in self.pipeline:
input_dict |= transform(input_dict)
return input_dict
Transforms are configured per split (train/val/test/predict) in the DataModule and applied during Dataset.__getitem__().
Preprocessing¶
Preprocessing runs on GPU after batch transfer, enabling hardware-accelerated operations. It follows the same dict-in/dict-out pattern as transforms but operates on batched tensors.
class DataPreprocessing(nn.Module):
def __init__(self, pipeline: Optional[List[nn.Module]] = None):
super().__init__()
self.pipeline = nn.ModuleList(pipeline or [])
def __call__(self, batch_inputs_dict: Dict[str, Any]) -> Dict[str, Any]:
for layer in self.pipeline:
batch_inputs_dict |= layer(batch_inputs_dict)
return batch_inputs_dict
The DataModule.on_after_batch_transfer() method automatically applies preprocessing if configured. Each preprocessing layer is an nn.Module that operates on batched tensors already on the target device.
Model¶
All models inherit from BaseModel (extending LightningModule), which provides a standard interface:
class BaseModel(L.LightningModule, ABC):
def __init__(
self,
optimizer: Optional[Callable[..., Optimizer]] = None,
scheduler: Optional[Callable[[Optimizer], LRScheduler]] = None,
):
super().__init__()
self.forward_signature = inspect.signature(self.forward)
self.compute_metrics_signature = inspect.signature(self.compute_metrics)
...
@abstractmethod
def forward(self, **kwargs: Any) -> Union[torch.Tensor, Sequence[torch.Tensor]]:
...
@abstractmethod
def compute_metrics(
self, outputs: Union[torch.Tensor, Sequence[torch.Tensor]], **kwargs: Any
) -> Dict[str, torch.Tensor]:
...
def configure_optimizers(self) -> Union[Optimizer, Dict[str, Any]]:
...
The base class handles:
- Unified step logic - All models share the same step logic for training, validation, test and predict steps
- Automatic signature inspection - Only passes relevant kwargs to
forward()andcompute_metrics()based on method signatures captured at initialization - Metric logging - Logs metrics to Lightning's logger with proper prefixes
- Predict step - Handles prediction without computing metrics
Models can have any internal architecture. The framework only requires implementing the abstract interface. The base class automatically filters batch inputs to match each method's signature using inspect.signature().
Warning
forward() and compute_metrics() argument names must match the keys in the batch dictionary.
Deployment Pipeline¶
The deployment pipeline exports trained models to production-ready formats:
flowchart LR
subgraph ONNXExport [ONNX Export]
Checkpoint[Checkpoint] --> Load[Load Weights]
Load --> Model[Model Eval Mode]
Model --> Trace[Trace with Sample]
Trace --> ONNX[ONNX File]
end
subgraph TensorRTBuild [TensorRT Build]
ONNX --> Parse[Parse ONNX]
Parse --> Optimize[Build Engine]
Optimize --> EngineFile[Engine File]
end
style Checkpoint fill:#a5d6a7,opacity:0.2,stroke:#05bc23
style Load fill:#a5d6a7,opacity:0.2,stroke:#05bc23
style Model fill:#a5d6a7,opacity:0.2,stroke:#05bc23
style Trace fill:#a5d6a7,opacity:0.2,stroke:#05bc23
style ONNX fill:#a5d6a7,opacity:0.2,stroke:#05bc23
style Parse fill:#a5d6a7,opacity:0.2,stroke:#05bc23
style Optimize fill:#a5d6a7,opacity:0.2,stroke:#05bc23
style EngineFile fill:#a5d6a7,opacity:0.2,stroke:#05bc23
The deployment process:
- Load checkpoint - Instantiates model from config and loads weights from checkpoint
- Get input sample - Uses the predict dataloader to obtain a sample matching the model's forward signature
- Export to ONNX - Traces the model with the input sample, supporting dynamic shapes for variable input sizes
- Build TensorRT engine - Optimizes the ONNX model for inference on NVIDIA GPUs with configurable optimization profile
Configuration is done through the deploy section in task configs.
Extending the Framework¶
| Extension Point | How |
|---|---|
| New model | Subclass BaseModel, implement forward() and compute_metrics() |
| New dataset | Subclass DataModule and Dataset |
| New transform | Subclass BaseTransform, implement transform() |
| New task | Create config in configs/tasks/ |
See Adding Models for a detailed guide.